
\documentclass{article}
\usepackage{oz} % oz or z-eves or fuzz styles

\begin{document}
This is the BirthdayBook specification, from
Spivey~\cite{spivey:z-notation2}. We extend it slightly
by adding an extra operation, $RemindOne$, that is non-deterministic.

\begin{zed}
 [NAME, ~ DATE]
\end{zed}

The $BirthdayBook$ schema defines the \emph{state space} of
the birthday book system.

\begin{schema}{BirthdayBook}
 known: \power NAME \\
 birthday: NAME \pfun DATE
\where
 known=\dom birthday
\end{schema}

This $InitBirthdayBook$ specifies the initial state
of the birthday book system. It does not say explicitly that
$birthday'$ is empty, but that is implicit, because its domain
is empty.

\begin{schema}{InitBirthdayBook}
 BirthdayBook~'
\where
 known' = \{ \}
\end{schema}

Next we have several operation schemas to define the normal (non-error)
behaviour of the system.

\begin{schema}{AddBirthday}
 \Delta BirthdayBook \\
 name?: NAME \\
 date?: DATE
\where
 name? \notin known
\\
 birthday' = birthday \cup \{name? \mapsto date?\}
\end{schema}

\begin{schema}{FindBirthday}
 \Xi BirthdayBook \\
 name?: NAME \\
 date!: DATE
\where
 name? \in known
\\

 date! = birthday(name?)
\end{schema}

\begin{schema}{Remind}
 \Xi BirthdayBook \\
 today?: DATE \\
 cards!: \power NAME
\where
 cards! = \{ n: known | birthday(n) = today? \}
\end{schema}

This $RemindOne$ schema does not appear in Spivey, but is
included to show how non-deterministic schemas can be animated.
It reminds us of just one person who has a birthday on the given
day.
\begin{schema}{RemindOne}
 \Xi BirthdayBook \\
 today?: DATE \\
 card!: NAME
\where
 card! \in known \\
 birthday ~ card! = today?
\end{schema}

Now we strengthen the specification by adding error handling.

\begin{zed}
 REPORT ::= ok | already_known | not_known
\end{zed}

First we define auxiliary schemas that capture various success
and error cases.

\begin{schema}{Success}
 result!: REPORT
\where
 result! = ok
\end{schema}

\begin{schema}{AlreadyKnown}
 \Xi BirthdayBook \\
 name?: NAME \\
 result!: REPORT
\where
 name? \in known \\
 result! = already_known
\end{schema}

\begin{schema}{NotKnown}
 \Xi BirthdayBook \\
 name?: NAME \\

 result!: REPORT
\where
 name? \notin known \\
 result! = not_known
\end{schema}

Finally, we define robust versions of all the operations
by specifying how errors are handled.
For illustration purposes, we leave the $RemindOne$ operation non-robust.

\begin{zed}
 RAddBirthday == (AddBirthday \land Success) \lor AlreadyKnown \\
 RFindBirthday == (FindBirthday \land Success) \lor NotKnown \\
 RRemind == Remind \land Success
\end{zed}

\bibliography{spec}
\begin{thebibliography}{1}
\bibitem{spivey:z-notation2}
J.~Michael Spivey.
\newblock {\em The Z Notation: A Reference Manual}.
\newblock International Series in Computer Science. Prentice-Hall International
 (UK) Ltd, second edition, 1992.
\end{thebibliography}
\end{document}

